Vesicular stomatitis virus as a vector to deliver virus-like particles of human norovirus: a new vaccine candidate against an important noncultivable virus.
نویسندگان
چکیده
Human norovirus (HuNoV) is a major causative agent of food-borne gastroenteritis worldwide. Currently, there are no vaccines or effective therapeutic interventions for this virus. Development of an attenuated vaccine for HuNoV has been hampered by the inability to grow the virus in cell culture. Thus, a vector-based vaccine may be ideal. In this study, we constructed a recombinant vesicular stomatitis virus (rVSV-VP1) expressing VP1, the major capsid protein of HuNoV. Expression of the capsid protein by VSV resulted in the formation of HuNoV virus-like particles (VLPs) that are morphologically and antigenically similar to native virions. Recombinant rVSV-VP1 was attenuated in cultured mammalian cells as well as in mice. Mice inoculated with a single dose of rVSV-VP1 through intranasal and oral routes stimulated a significantly stronger humoral and cellular immune response than baculovirus-expressed VLP vaccination. Moreover, we demonstrated that mice inoculated with rVSV-VP1 triggered a comparable level of fecal and vaginal IgA antibody. Taken together, the VSV recombinant system not only provides a new approach to generate HuNoV VLPs in vitro but also a new avenue for the development of vectored vaccines against norovirus and other noncultivable viruses.
منابع مشابه
Heat shock protein 70 enhances mucosal immunity against human norovirus when coexpressed from a vesicular stomatitis virus vector.
UNLABELLED Human norovirus (NoV) accounts for 95% of nonbacterial gastroenteritis worldwide. Currently, there is no vaccine available to combat human NoV as it is not cultivable and lacks a small-animal model. Recently, we demonstrated that recombinant vesicular stomatitis virus (rVSV) expressing human NoV capsid protein (rVSV-VP1) induced strong immunities in mice (Y. Ma and J. Li, J. Virol. 8...
متن کاملProtection against lethal vaccinia virus challenge by using an attenuated matrix protein mutant vesicular stomatitis virus vaccine vector expressing poxvirus antigens.
Recombinant vesicular stomatitis viruses (VSV) are excellent candidate vectors for vaccination against human diseases. The neurovirulence of VSV in animal models requires the attenuation of the virus for use in humans. Previous efforts have focused on attenuating virus replication. Studies presented here test an alternative approach for attenuation that uses a matrix (M) protein mutant (rM51R) ...
متن کاملTransient expression of virus-like particles in plants: a promising platform for rapid vaccine production
Transient expression is an efficient and fast system to express recombinant proteins which has been used in different eukaryotic hosts such as mammalian and plant cells. Several applications of this system have so far been used which expression of proteins of interest is one of them. Recently, plants have attracted attention for being used as hosts for the production of recombinant pharmaceutic...
متن کاملEbolavirus Vaccines: Progress in the Fight Against Ebola Virus Disease.
Ebolaviruses are highly infectious pathogens that cause lethal Ebola virus disease (EVD) in humans and non-human primates (NHPs). Due to their high pathogenicity and transmissibility, as well as the potential to be misused as a bioterrorism agent, ebolaviruses would threaten the health of global populations if not controlled. In this review, we describe the origin and structure of ebolaviruses ...
متن کاملRhabdovirus-based vaccine platforms against henipaviruses.
UNLABELLED The emerging zoonotic pathogens Hendra virus (HeV) and Nipah virus (NiV) are in the genus Henipavirus in the family Paramyxoviridae. HeV and NiV infections can be highly fatal to humans and livestock. The goal of this study was to develop candidate vaccines against henipaviruses utilizing two well-established rhabdoviral vaccine vector platforms, recombinant rabies virus (RABV) and r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 85 6 شماره
صفحات -
تاریخ انتشار 2011